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Amplitude Expansions for Instabilities in Populations 
of Globally-Coupled Oscillators 

John Dav id  Crawford ~ 
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We analyze the nonlinear dynamics near the incoherent state in a mean-field 
model of coupled oscillators. The population is described by a Fokker-Planck 
equation for the distribution of phases, and we apply center-manifold reduction 
to obtain the amplitude equations for steady-state and Hopf bifurcation from 
the equilibrium state with a uniform phase distribution. When the population is 
described by a native frequency distribution that is reflection-symmetric about 
zero, the problem has circular symmetry. In the limit of zero extrinsic noise, 
although the critical eigenvalues are embedded in the continuous spectrum, the 
nonlinear coefficients in the amplitude equation remain finite, in contrast to the 
singular behavior found in similar instabilities described by the Vlasov-Poisson 
equation. For a bimodal reflection-symmetric distribution, both types of bifur- 
cation are possible and they coincide at a codimension-two Takens-Bogdanov 
point. The steady-state bifurcation may be supercritical or subcritical and 
produces a time-independent synchronized state. The Hopf bifurcation produces 
both supercritical stable standing waves and supercritical unstable traveling 
waves. Previous work on the Hopf hifui-cation in a bimodal population by 
Bonilla, Neu, and Spigler and by Okuda and Kuramoto predicted stable 
traveling waves and stable standing waves, respectively. A comparison to these 
previous calculations shows that the prediction of stable traveling waves results 
from a failure to include all unstable modes. 
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1. INTRODUCTION 

T h e  d y n a m i c s  of  a co l l ec t ion  of  weak ly  c o u p l e d  l imi t  cycle osc i l l a to r s  c a n  

be  a n a l y z e d  by  t r e a t i n g  the  osc i l l a to r  p h a s e s  {01 ..... 0~v} as a n  a u t o n o m o u s  

d y n a m i c a l  sys tem.  In  the  c o n t e x t  of  b io log ica l  osc i l l a to r s  th is  a p p r o a c h  
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was advocated by Winfree and subsequently developed by Kuramoto for 
reaction-diffusion systems. ~'2) In particular, Kuramoto formulated the 
widely studied model for phase dynamics 

K N 
0, = O9, + ~ /Y"t sin(0j - 0;) + ~,(t) (1) 

where the natural frequencies {O9;} are randomly distributed according 
to a density g(Og). The effect of adding noise ~i(t) to each phase was 
considered later by Sakaguchi) 3) 

For large N, this model describes a transition to collective synchronized 
behavior as K increases above a critical threshold K,.. More precisely, in 
terms of the order parameter, 

1 ~v 
R( t )ei~m = N~ ~-'=1 ei~ (2) 

one finds numerically a transition from an "incoherent" state with R(t)~, 0 
to a partially synchronized state with R(t)~ (K-K,.) ~/z for K>K,.. For 
g(Og) chosen to be unimodal and symmetric about O9=0, Kuramoto 
obtained an analytic expression for the order parameter R as a function of 
the coupling K. His result agrees with numerical simulations and yields a 
simple expression for the critical coupling in the absence of noise 

2 
K~ - (3) 

rig(0) 

This transition has been analyzed b y  several authors ~4 '~) and additional 
references can be found in Kuramoto and Nishikawa. m If g(Og) has 
compact support, then for sufficiently large K there can be a transition to 
a completely synchronized state with R ~ 1. (12'13) 

Since the incoherent state and the partially synchronized state emerge 
when the initial value problem is solved numerically, each must be stable 
in the appropriate range of K at least in an operational sense. However, the 
theoretical explanation of this stability has proved to be rather subtle even 
for the incoherent state, but there has been significant recent progress in the 
work of Strogatz and Mirollo. (7'8) Following Sakaguchi, they considered the 
iarge-N limit of (1) and studied the Fokker-Planck equation 

~t + O(pv) = D o2p (4) 
O0 O0" 

for the distribution of oscillators. The density p(O, co, t) is defined so that 
Ng(og)p(O, o9, t)dOdo9 describes the number of oscillators with natural 
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frequencies in [o9, w + dto] and phases in [0, 0 + dO]. Thus p(O, to, t) dO 
denotes the fraction of oscillators with natural frequency to and" phase in 
[0, 0 + dO] and satisfies the normalization 

The identity 

f~ " dO p(O, to, t) = 1 (5) 

l N 

R(t) sin(~O - 0i) = ~ . =  s in(0 j -  03 

allows the phase velocity (1) of an oscillator to be written as 

v(O, o9, t) = to + KR(t)  sin(~, - 0) 

(6) 

(7) 

and the order parameter (2) can be reexpressed in terms of the density 

2tt oO 

R(t)eiq'(')= fo dO f _ ~  daJ p(O, oJ, t) g(w)e '~ (8) 

The diffusion coefficient in (4) reflects the Gaussian noise terms G(t) 
defined by 

( r  = 0  (9) 

( r r ) = 2Dfo. b ( s -  t). (10) 

Equations (4) and (7)-(8) provide a continuum description of the 
oscillator population for which issues of stability and bifurcation can be 
analyzed in some detail. The incoherent state is described by the uniform 
distribution Po = 1/2~ and defines an equilibrium for (4) since R = 0 at Po. 
By defining )7, the deviation from Po, p(O, to, t )=po+q(O,  to, t), and 
eliminating v in (4), the model can be rewritten as a single equation for q: 

&l 
0---; = ~'~ + Jr(q)  (11) 

where 

O2rl 8rl Kpo r io 2, 
a " = D ~ - t o N + - T  L ~- fo dO' dto' q( O', r t) g( og')e i~ + cc 

--0:2 

(12) 

822/74/5-6-7 
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and the nonlinear terms are 

�9 A/'(q) = 2 ~e q - , - ~  dO' f_~  doo'q(O',co',t)g(co')e -i~ 

+ e -i~ rl + t - ~  dO' dco' rl(O', co', t) g(co')e i~ 

Note  that the normalizat ion (5) of p implies 

2 n  

Is dOrl(O, co, t )=O (14) 

An important  qualitative feature of this evolution equat ion is its 
symmetry.  The group 0 (2 )  is generated by rotat ions 

~.(0, co)= (0+~, co) (15) 

and reflections 

~:-(0, co)= - ( 0 ,  co)= - ( 0 ,  co) (16) 

which act on functions r/(0, co) in the usual way: 

(7.rl)(O, co)=rl(~ -~ .(O, co)), ~, ~ O(2) (17) 

Provided g(co) satisfies 

g(co) = g ( -  co) (18) 

the equat ion for q in (11) has 0 (2 )  symmetry;  more precisely 7 " ( ~ q ) - -  
.~(V. q) and ~,- JV'(q) = JV'(V �9 q) for all 7 ~ O(2). A realistic populat ion of 
oscillators will not have zero mean frequency as implied by (18), but if 
their frequency distribution G(tojab) is symmetr ic  abou t  the mean o5, then 
in the rotat ing frame defined by 

(0, co)= (0lab-- OSt , (/)lab--(/)) (19) 

the frequency distribution g(co)= G(w+Co) will satisfy (18). The densities 
in the lab frame and in the rotat ing frame are related by'- 

p(0, co, t) = Ptab(O + ~t,  to + ~, t) (20) 

2 In the lab frame the evolution for pL,b(Ov~, w~.b, t) has rotation symmetry SO(2) but not 
reflection symmetry. Calculations done using lab frame variables have puzzling features that 
are nongeneric for SO(2) symmetry and have their origin in the full 0(2) symmetry of the 
rotating frame. 



Instabilities in Globally-Coupled Oscillators 1051 

If g lacks reflectional invariance (18), then the symmetry in the rotating 
frame is reduced to the rotations SO(2). 3 

Strogatz and Mirollo provide a linear stability analysis of Po focusing 
especially on populations with even distributions (18) that decrease 
monotonically away from O.)=0. (7) They show that .~ has a continuous 
spectrum with real part equal to - D ,  and that it may also have point 
spectrum (eigenvalues) depending on the coupling strength. For K suffi- 
ciently small, the point spectrum is empty, but as the coupling increases, a 
real eigenvalue 2. emerges from the continuous spectrum and for K >  K,. 
moves into the right half-plane 2 > 0 signifying linear instability of Po- The 
condition 2 = 0 determines a critical coupling 

If l- K,.=2 - ~  D2+092  .j (21) 

that agrees with results for K,. derived by Sakaguchi using different 
arguments and reduces to (3) when D--,  0. Thus the onset of synchroniza- 
tion is shown to coincide with the appearance of a linear unstable mode for 
the Fokker-Planck equilibrium. Subsequently Strogatz et al. demonstrated 
that for D = 0 and K <  Kc, the linearized equation predicts Po is stable in 
the sense that R( t )  decays via a "phase mixing" mechanism that is 
qualitatively similar to Landau damping in a collisionless plasma} 8} 

Recently Bonilla et al. investigated bifurcations from t9 o assuming a 
reflection-symmetric frequency distribution (18), but relaxing the require- 
ment that g(to) has a single peak. ~t~ For bimodal distributions they 
showed that f f  could have complex eigenvalues so that the instability of/9 o 
occurs via Hopf  bifurcation. Amplitude equations were derived to describe 
the nonlinear development of the instabilities, but unfortunately the Hopf  
analysis retains only half of the unstable eigenvectors and as a result 
nonlinear traveling and standing wave solutions were overlooked. The fact 
that the 0(2)  symmetry leads to degenerate eigenvalues of multiplicity two 
was apparently not recognized. 

Independently, Okuda and Kuramoto analyzed the onset of collective 
behavior in a population comprised of two subpopulations using a different 
model; each subpopulation had a unique frequency in the absence of 
coupling and was described by a number density, tgl The instability of the 
incoherent state was studied under several assumptions on the couplings 
between the oscillators. In the regime where the coupling between the 
populations equals the coupling within a population, their model is a 

s An interesting discussion of the consequences of reducing O(2) symmetry to S0(2) has been 
given in the context of fluid dynamics in ref. 14. 
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special case of (4). They also find that instability can arise from either 
real or complex eigenvalues and derived amplitude equations for the non- 
linear behavior. Their equations include both traveling and standing wave 
solutions, although the role of symmetry in the problem is not discussed. 

In this paper I reexamine the bifurcation problem and derive 
amplitude equations for both steady-state and Hopf bifurcation using 
center-manifold reduction. In Section 2 the spectrum of Za is discussed to 
clarify the treatment of complex eigenvalues and to discuss the occurrence 
of nonsemisimple real eigenvalues. These arise naturally at the multicritical 
point where the Hopf and steady-state bifurcations coalesce. This codimen- 
sion-two point corresponds to a so-called Takens-Bogdanov bifurcation 
and the relevant amplitude equations will be investigated in future work. 
The discussion of Section 2 is facilitated by the similarities of ~ to the 
linear operator for the Vlasov-Poisson equation, which has been discussed 
elsewhere. ~ i s 

In Section 3 the amplitude equations are derived and their limiting 
form as D ~ 0  determined. The results are strikingly different from 
analogous amplitude equations for Vlasov instabilities; in the collisionless 
plasma case the coefficients diverge as the critical eigenvalues approach the 
continuum, but in this model the coefficients have finite limits/~6~ In the 
nonlinear theory, the presence of 0(2) symmetry is exploited to take 
advantage of the well-established theory of bifurcation in systems with 
circular symmetryJ ~7'18~ For a reflection-symmetric bimodal population 
comprised of two Lorentzians, we evaluate the cubic normal form coef- 
ficients. For the steady-state bifurcation the appearance of the synchronized 
state can be either supercritical or subcritical. In the Hopf bifurcation we 
find that the standing waves are supercritical and stable while the traveling 
waves are supercritical and unstable. These conclusions are compared to 
previous studies.19' 11 ) 

2. L INEAR T H E O R Y  

The Fourier expansion of r/, 

q(O, ~o)= L q~(~ e"~ 

allows the linear operator (12) to be reexpressed as 

s L (Ltqt) eu~ 
I =  - - ~ ,  

(22) 

(23) 
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where 

LMt=-il(oJ-ilD)qt+~PoK(~t.l+6t._l) d~' g(oY)ql(o~' ) (24) 

Note that the normalization condition (14) on q implies 

qt=o -= 0 (25) 

An adjoint operator (A, ~ B )  = (.W'A, B) can be defined for the inner 
product 

2n f ~o (A, B ) -  [" dO dog A(O, co)* B(O, o~) (26) 
~ 0  - - o  o 

In terms of the Fourier expansion A = Z A~ eu~ this definition yields 

.L-atA= ~ (L*lAt)e i'~ (27) 

where 

7 (L~Ar (6/,1 + 31._ l) d~o'Al(m' ) (28) 

It is convenient to introduce a concise notation for the integration over co 
in (26), 

(A, B) =_ do9 A*B (29) 

Then L, and Lt* satisfy (A, L tB)=  (L*tA, B). 
The eigenvalue problem for L. a, 

~ = , l ~  (30) 

can be treated on each Fourier subspace separately so we set 

~'t( O, (.0) ~- ei/~ oJ ) (31) 

and reduce (30) to 

L,~, = ~q, (32) 

After scaling the eigenvalue by 2 = - i l z ,  the eigenvalue equation (32) 
becomes 

- -  i l K  
[ (co- - z ) - - i lD]O=--~(6c l  +61,_l) f dog' g(og')~(oo') (33) 
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The first observat ion is that Ill = I is a necessary condition for ~, 
to be a well-behaved eigenfunction. (71 When II1 :~ 1 then (33) becomes 
[ ( 0 9 - z ) - i l D ] ~ k = O ,  and we have ~O=0 unless l m z = - l D .  For  
Im z = - I D ,  then [ ( 0 9 - z ) - i l D ]  is nonzero except at 09= Re z, so the 
only solutions are delta functions 6 ( 0 9 - R e  z). These solutions correspond 
to a continuous spectrum for Lt  along Re 2 = l Im z = -12D;  as D --* 0 the 
continuous spectrum moves onto the imaginary axis. For  II1 4:1 this is 
the only contr ibut ion to the spectrum of s and it does not depend on the 
coupling K or on the frequency distribution g(09). 

For  Ill = 1 it is possible to have eigenfunctions that are nonsingular;  
their occurrence does depend on K and g(09). Now the eigenvalue equat ion 
(33) becomes 

- -  i l K  I ~ [ ( o 9 - z ) - i t D ] O = - - - -  ~ d09' g(og') ~(r.o') (1ll = l) (34) 

When Im z = - I D ,  we get singular solutions as before corresponding to a 
continuous spectrum along Re 2 = - D ;  the detailed form of these solutions 
will not be needed. If Im z ~ - I D ,  then (09 - z) - ilD cannot  vanish, and we 
have 

:  x/2_ f -  
~b - (~o - z) - i l S  _ .  d09' g(09') ~,(09') (35) 

If the integral vanishes, then ~b -0 ,  so we may  assume the integral is 
nonzero and normalize q, such that 

j.~o d09' g(09') $(09') = 1 (36) 
- - o o  

Consistency between (35) and (36) requires z to be a root of the "spectral 
function" 

i lK ~oo g(09,) 
A t ( z ) =  1 +--g- l_  o o z J  d09' 09' _ z -- ilD (111 = 1) (37) 

The spectral function A t satisfies two identities; for arbi trary g(tn) we 
have 

A,(z)*=A_Az*) (38) 

so when A t ( z o ) = 0  determines an eigenvalue 2 =  - i l z o ,  then A _ l ( z * ) = O  
determines the complex-conjugate eigenvalue 2*. In addition, when the 
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frequency distribution is reflection-symmetric (18), the problem has 0 (2 )  
symmetry  and At satisfies 

At(z)*=AI(-z*)  (39) 

Now roots come in pairs whenever Re z :~ 0, i.e., whenever 2 is complex. 
The roots of  At(z) determine the eigenvalues and the nature of  the 

root  determines whether the eigenvalue is semisimple or not. Recall that 
the projection opera tor  P~. onto  the generalized eigenspace E~. for an 
isolated eigenvalue 2 = -ilzo is defined by a contour  integral, ~9~ 

1 f d2' 0-' - ,,~)- 'A (40) P~A=2n--~ ro 

where F o is a small loop enclosing ;t in a counterclockwise sense. The 
resolvent opera tor  ( 2 - - C a ) - 1  can be expressed as 4 

(2--s ~ (R t (2 )A t ) e  n~ (41) 
/ =  --oO 

where Rt(2) = (2 - L t ) -  i denotes the resolvent for L / a n d  can be calculated 
explicitly, 

At(og) + (61, t +6t_t)K/2. f ~ dog' g(~176 
R t ( 2 ) A t -  ilo9 + 12D + 2 At(il2)(ilo9 + 12D + 2) ++ ilo/+ 12D + 2 

With (41) P~. may  be simplified to 

el~ ~ e-m lr ~ P:.A = ~ i  d2' Rt(2')A, +=~i 

(42) 

d2' R_ , (A ' )A_~ (43) 

since eigenvalues can only occur for Ill = 1. If Ex, the range of P;., is one- 
dimensional,  then 2 is simple; when the dimension is greater than one and 
the eigenvectors of s span E;. the eigenvalue is semisimple. If dim E;. > 1, 
and the eigenvectors do not span Ea, then ;t is nonsemisimple. Simple 
roots of At(z) lead to simple or  semisimple eigenvalues and multiple roots 
give eigenvalues that  are nonsemisimple. We discuss this point in detail 
for the case of  a reflection-symmetric frequency distribution and 0 (2 )  
symmetry.  

4 In this sum, the term I = 0 may be omitted since the relevant space of functions satisfies (25). 
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2.1. Simple Roots and Semisimple Eigenvalues 

For a simple root Zo of A~(z), we have 

Al(zo)=0,  A'l(Zo)~O (44) 

where A' denotes the derivative of A~(z) with respect to z. The identities 
(38)-(39) imply the additional simple roots 

A l ( - - z * ) = O ,  A_ l ( z~ )=O,  A _ l ( - Z o ) = 0  (45) 

If Re Zo=0 (a real eigenvalue), then Zo and - z *  are the same root, and 
roots (z~', -Zo)  also coincide. When Re z 0 :r (complex eigenvalues) then 
these roots are all distinct. 

2.1.1. Real Eigenvalues (Rezo=O).  With Rezo=0 ,  the roots 
Zo and z* for l =  +__1 lead to linearly independent eigenvectors for the real 
eigenvalue 2 = - izo.  From (31) and (35), these vectors are 

where 

and the conjugate function 

gt( O, o9) = ei~ og ) (46) 

- iK/2 
~b(og)- (47) 

(og-  Zo ) -  iD 

~u(O, o9)* = e-i~ (48) 

Note that these eigenvectors are related by reflection, ~u(0, co)*= 
(x.  ~)(0, o9). Corresponding to ~u and x.  ~, there are adjoint eigenvectors 

~90t~= 2 ~  (49) 

~t(x. ~')= ~.(~. ~) (50) 

where 

with 

ei0 
~(0, co) = ~ Oto9) (51) 

-g(og) 
~(o9) = (52) 

A'~(Zo)* (o9 - z*  + iD) 
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These eigenvectors are conjugate x .  ~ =  ~* and satisfy 

(~', ~ )  = (,~. ~', K. ~ )  = 1 

(~', K. ~') = (K. ~', ~ ) = o  

(53) 

(54) 

For example, the eigenvalue equation (49) can be verified directly from the 
definitions (27)-(28): 

e io 

_ _  e iO [ ig(w)(o9 + i D )  

2rcA'l(Zo)* (co - z* + iD) 

e i~ { ig(o~)z* 
--2nA'l(Zo)* --ig(og) ( o g - z * - i D )  

e'~ ( --g(og) ~ 
= iz*2zA'~(Zo)* \'(o9 - z - ~  iDiJ 

g(~ f ~  do  9 ,  g(og') ] 
2 _ ~ (09'--z* + iD) 

ig(og)[ A _ l ( z * ) -  1]} 

(55) 

since 2 = 2* = -izo. 
Since Al(zo)= 0 corresponds to a simple pole, the result of projecting 

q onto ~u is easily evaluated. From (42)-(43) we have 

e'~ Ir  ~ e-i~ fr~ 

e'~ ~r ~ K/2 f~  g(o9') q,(og') 
= ~-~nini d2' A , ( i2, )( iog + D + 2 , ) - ~. dog' io9 '+D+2'  

e-~~ fr~ K/2 f ~- + ~ i  d 2 ' A _ ~ ( - i 2 ' ) ( - i o g +  D +  2') do9'g(og')q-~(og') _~ - i c o ' + D + 2 '  

= e i  0 K/2 ~ 
iA'l(Zo)(io9 + D - i z o )  J do9 ' g(og') ql(og') _ ~. iog' + D - izo 

+ e_i o K/2 I ~ do9' 
g(o9 ')  r/_ I (f,o') 

- i A ' _ l ( Z * ) ( - i o 9 + D + i z * )  - ~  - i o 9 ' + D + i z *  

= e'~ q, > + e-'~ *, q - i  > 

= (~', q) ~(0, to)+ (x.  ~, q)s:. ~u(0, o9) (56) 

The eigenvectors ~ and x. ~u clearly span the range of P~.. 
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2.1.2. Complex Eigenvalues (Rezo~0).  When Rezo4:0,  then 
Zo and -Zo are distinct roots of A ~(z) and A_ ~(z), respectively, that deter- 
mine two linearly independent eigenvectors for the complex eigenvalue 
2 =  - i z  o. These eigenvectors are ~ given by (46)-(47) and the reflected 
function 

x.  ~ =  e - ; ~ 1 6 2  (57) 

The second eigenvector was omitted in the Hopf analysis of Bonilla et 
al. ~tt~ The remaining roots - z *  and z* for A~ and A_~ determine the 
conjugate eigenvectors ~* and (~c. ~u). corresponding to the conjugate 
eigenvalue 2* = iz*. The adjoint eigenvectors ~ and x.  ~ have the same 
form (51)-(52); however, now (49)-(50) become 

f ~ , = , ~ * ~  (58) 

s �9 ~)  = 2*(x.  ~') (59) 

The adjoint eigenvectors for 2 are the conjugate functions ~* and (x. ~)*. 
The orthogonality relations (53)-(54) remain valid. 

The projection P;.q can be evaluated as before (56), except that now 
the relevant root (pole) for 1= -1  is A _ ~(-Zo) = 0. The final result has the 
same form, 

P~r/= (~, r/)~+ (K- ~P, r/)x. ~u (60) 

A similar evaluation of P; .r /gives 

P~,q = (P;.q)* (61) 

In each case the eigenvalue is semisimple with multiplicity two. 

2.2. Mult iple Roots and Nonsemisimple Eigenvalues 

A single root, A ~(Zo)= 0, determines exactly one eigenvector (46)-(47) 
for the eigenvalue 2 = - i z o .  There can be additional linearly independent 
eigenvectors for the same eigenvalue 2 only if A_~ simultaneously has a 
root at -Zo. In any event, a given eigenvalue can never have more than 
two eigenvectors. However, if the root zo of A 1 is not simple, the range of 
P~. turns out to have dimension greater than the number of eigenvectors 
because there are generalized eigenvectors in addition to the true eigen- 
vectors. A generalized eigenvector /~ satisfies 

(&a _ 2)J T = 0 (62) 

(L~ - 2 )  J -  1 ~':~ 0 ( 6 3 )  
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for some integer j~> 2. Note that (62) simply says that (&o_ 2 ) j - ~ - i s  an 
eigenvector for 2. 

Since degenerate roots of A ~ arise when simple roots collide, we expect 
generalized eigenvectors to enter the linear problem whenever eigenvalues 
collide as parameters are varied. The connection between degenerate roots 
and generalized eigenvalues can be made explicit as follows. Consider 
the simplest situation j =  2 and let ~ =  ei~ be a true eigenvector corre- 
sponding to A ~(Zo) = 0. We seek a generalized e igenvec to r / '=  ei~ satisfying 

(S a - 2 ) / " =  ~P ( 6 4 )  

(s176 2)z r =  0 (65) 

Note that (64) implies (65). From the definition of So, (64) can be rewritten 
a s  

i K  r ~ K/2  
(09 - Zo - iO)o  + - ~  J_ ~ dr g(09') 0(09') = (66) 

o9 - Zo - iD 

Upon multiplying by g ( w ) / ( 0 9 - Z o - i D )  and integrating, (66) becomes 

A ,(Zo) do9' g(o)') o(09') = - iA ' l (Zo)  (67) 

Since A~(zo)=0, the assumption (64) that a generalized eigenvector r 
exists leads immediately to a contradiction if the root is simple, i.e., 
if A ] ( z o ) r  An extension of this argument shows that a generalized 
eigenvectors with j >/2 for 2 cannot occur unless the first j -  1 derivatives 
of A~ vanish at the root. 

Bonilla et al. found that the transition between a bimodat distribution 
g(09) supporting real eigenvalues and a bimodal distribution g(co) supporting 
complex eigenvalues occurs via a nonsemisimple real eigenvalue corre- 
sponding to a double root: 

A~(zo)=0, A'~(Zo) = 0, A ; ' ( Z o ) r  (68) 

where Re Zo = 0. For more complicated distributions, it is likely that double 
roots with Re zo r  are also possible. The case of a real tfigenvalue is 
considered here and we assume Re Zo = 0 for the remainder of this section. 
The double root (68) at Zo then implies a double root at -Zo  for A ~' 

A _ l ( - Z o )  =0 ,  A'_ ~(-Zo) = 0, A " _ ~ ( - Z o ) r  (69) 

In applications with double roots, the frequency distribution will typi- 
cally depend on at least one additional parameter 09o; for example, in a 
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bimodal distribution COo could be the distance between peaks in g(og, r 
Then A'I = 0 determines Zo as a function of K and o9o and A ~ = 0 implies a 
relation K =  K(ogo) between the parameters. The eigenvector corresponding 
to Aj(zo)=0 is then ~u= e~~ with 

- iK(ogo)/2 q,(og) = (70) 
( o g -  Zo ) - - iD  

and the generalized eigenvector Y= e% is determined by (66), 

K(o90 )/2 
v(og) = (o9 - z o -  iD ) 2 (71) 

One can always add to v(og) an arbitrary multiple of the homogeneous 
solution @, but without loss of generality we have set the coefficient of this 
term to zero. Reflection by x gives the eigenvector and generalized eigen- 
vector corresponding to the second root (69): x . ~ U = e - i ~ 1 6 2  and 
K" Y =  e- i~ 

For the adjoint eigenvalue problem, there is an eigenvector 
( 5 a t - 2 ) O = 0  and generalized eigenvector ( L f * - 2 ) ~ ' = ~ '  given by 
~'= ei~ and ~-= ei~ where 

~(,0)=[ -2g(o9,o90)  2A',"(Zo)g(o9,ogo) ]* 
h A i , ( z o ) ( W _ z o _ i D ) 2  q ~ " - ~  3A, (Zo)- (co -- z o -- tD )] 

(72) 

,, 2ig(o9, o9o) ]* (73) 
5(oJ) = A l ( Z o ) ( W _  Zo-- iD)]  

In addition, the reflected vector h- ~ and x.  ~" solve the same equations. 
These eigenvectors satisfy the biorthogonality relations 

(~', ~) = (~, ~k) = !, ( x . ~ , x . ~ ) = ( t < . ~ k , x . ~ ) = l  (74) 

(L r )=  (t~,o>= l, (x.L,~.r)=(K.~,,~.o)=l (75) 

and 

(~, / ' )=  (~,  o) =0,  (x -~ ,  x . / ' ) = 0  (76) 

(Y, 70=  (5, ~h) =0,  (K. Y, x - ~ ) = 0  (77) 

The evaluation of P;.q is now more involved because the poles are not 
simple; from (43) we have 



Instabilities in Globally-Coupled Oscillators 1061 

el~ f e- i~ 1 
P;q=~ini rod2' Rl(2')q' + 2-~i fro d2' R-  (2 ')q_,  

e'~ f~ ~ , K/2 f~  d(D,g((D', (Do) q,((D') 
=~-~-nini (t2 A~(i2')(i(D+ D + 2') _~ i(D' + D + 2' 

; ' e-io K/2 dco'  g(o.) , (Do)/7 _ I((D')  

+-~-f d2 'A_l ( - i2 ' ) ( - i (D+D+2'  ) _~. --i(D'+ D + 2' 

(78) 

Consider the first integral for K =  K((Do) when A l has a double root; the 
contribution from this double pole is 

ei~ fro ,K((Do)/2 ~ d(D,g(w',(Do) tl,((D') 
~ni d2' A,(i2 ) ( i (D+D+) . ' ) J  ~. i ( D ' + D + 2 '  (79) 

d2' [_A~(i2 )(i(D + D + 2 ) 

Expanding A l, we have 

( 2 ' - 2 )  2 
A ~(i2') = i2A 'z'(i2) - -  

g((D', (Do) "((D')~,7 
i(D' T s +--~ JJ~., = ;. 

(80) 

U . ' -  2) 3 
q - i 3 A ' l " ( i 2 ) - - +  . . .  ( 8 1 )  

2 3~ 

and evaluating the right-hand side of (80) gives 

ei"fr ~ K(tn~ f ~  de;' 
~ni d2'Aj(i2')(i(D+D+2') _~. 

= (~, q ) ~ +  ( ? , , 7 ) r  

g((D', (Do) ~t,((D') 
i~ '+D+2'  

(82) 

A similar evaluation of the second integral in (78) yields 
(K-~,  t/) ~:. ~ + ( t c .  ~, q).~:. )", which is the complex conjugate of (82). 
Overall we have 

p;.q = (9,  ~/) ~u+ (7, ~/) 2<+ (K. 9,  q) ~c - ~u+ (~c - ?, q)- K �9 r (83) 

Thus a purely imaginary double root determines a real eigenvalue with two 
eigenvectors and two generalized eigenvectors. 

Complete expansions in terms of the eigenfunctions of Lt and hence 5 p 
can be derived as in the Vlasov case (151 if desired. We do not need these 
expansions for the bifurcation analysis; it is sufficient to know how to 
project out the components of r/along the critical eigenvectors in the three 
cases of interest: semisimple real, semisimple complex, and nonsemisimple 
real. 
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2.3. Example of  a Bimodal  Populat ion 

We illustrate this discussion for the popu la t ion  

' ' 1 g(09, 090) = ~ (09 + 090)2 + e2 + (09 _ 090)2 + E2 (84) 

comprised of two subpopula t ions  centered at 09 = ---090; the e---, 0 limit 
yields the del ta-funct ion dis t r ibut ion considered independent ly  by O k u d a  
and K u r a m o t #  9) and by Bonilla et al. ~1) When 09o2>O-/3, there are two 
peaks in g(09, 090) located at 

(09poak/09o)2 = { 2 -  [ i  + (~/09o)2] m} [1 + (~/09o)-'] '/2 (85) 

For  Im z > - D ,  the evaluat ion of A ~ yields 5 

[z + i(e + D ) ]  2 - 09o - iK[z + i(e + D ) ) ] / 2  
A t(z) - [z + i(e + D ) ]  2 - 090 (86) 

which has two roots  for 090 > 0: 

z_+ = i{ (K/4) - e - D -t- [ (K/4)  z -- 09o] u2} (87) 

At 090=0, the expression in (86) has only a single root  z+ = i [ ( K / 2 ) - e - D ] ;  
the solut ion z at - i ( e  + D) is an artifact. F o r  0 < 4O9o < K, the roots  are 
pure imaginary  and the eigenvalues are real; a long the line 4090 = K the 
roots  collide, a double  root  forms, and a nonsemisimple  real eigenvalue 
occurs. When 4090 > K, the eigenvalues are complex and Hopf  bifurcat ion 
is possible. 

Fo r  409o<K, the root  z+ in (87) determines an eigenvalue if 
I m z + > - D ,  which requires either K>(2(09o+e2)/~ or K > 4 e ;  the 
solut ion z determines an eigenvalue when 4 e < K < 2 ( 0 9 2 + e 2 ) / ~ .  The 
eigenvalues 2_+ = - i z +  d isappear  into the cont inuous  spectrum at - D  
when 2_+ = - D .  This defines a bounda ry  in pa ramete r  space 

K = K , , -  2(09 0 + ~fl)/e (88) 

which is tangent  to K =  409 0 at 090 = e + D. The real eigenvalues cross the 
imaginary  axis 2_+ = 0 along a second bounda ry  

K = K,. = 2[09 o + (~2 + D2)]/(8 + D) ('89) 

5 This case is easily treated by closing the integration contour in the lower half-plane. One can 
show that for Irn z < - D  and K/> 0, the spectral function has no roots. 
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with 2 § = 0 if K < 4(e + D) and 2_ = 0 if K > 4(e + D). This second bound- 
ary is tangent to K =  4o9o at K =  4(e + D), where we find a nonsemisimple 
eigenvalue at zero; here the steady-state bifurcation turns into Hopf  
bifurcation. Figure 1 shows the (K, O9o) parameter space with the curves 
corresponding to eigenvalues coalescing with the continuum, crossing the 
imaginary axis, or colliding on the real axis. 

For 4o90>K, the roots (87) are complex and the eigenvalues (2, 2*) 
are given by 

2 = - i z o  = (K- -  Kh)/4 + il2 (90) 

where f 2 = [ o g o - ( K / 4 ) 2 ]  '/2 and K h = 4 ( e + D ) .  If K decreases below 
K" =4e,  the eigenvalues (2, ,,l*) disappear into the continuous spectrum at 
Re 2 = - D ;  as K increases above Kh, there is a Hopf bifucation. The curves 
K =  K,~ and K =  Kj, are also shown in Fig. 1. 

In an early discussion of bimodal populations without extrinsic noise 
D = 0, Kuramoto suggested that once the maximum of g(og) was no longer 
at the average frequency (here 03=0) the incoherent state would go 
unstable for some K =  K,.o< K,. with synchronized behavior nucleating 
among oscillators whose frequencies lay near the maxima of_g(o9). 12~ 
Although the development of bimodal peaks in (84) for ogo>x/e/3 does 
alter the stability properties of the incoherent state, the effects are 

(.0 o 

E+D 

E 

K = K  h 
K = K  e 

I e I I |  

- , 

- -  ' ~.-z~Ig~_-..- - - - . . . . .  

2e 4E 2(E+D) 4(E+D) K 

Fig. 1. Eigenvalues of the incoherent state as a function of e., D, K, and to o. The solid curves 
indicate parameter values at which there is an eigenvalue on the imaginary axis; along K = K, 
there is an eigenvalue at zero and along K = K~, there is a pure imaginary complex-conjugate 
pair. At the juncture K=4(e  + D) and coo = (e + D) is the codimension-two point where the 
Hopf bifurcation surface intersects the steady-state bifurcation surface. The dashed curves 
indicates parameter values where eigenvalues coalesce with the continuum; upon crossing 
K =  K,~ or K =  K,. an eigenvalue either appears or disappears. Along the dot-dashed line 
K =  4to 0, the two eigenvalues collide on the real axis. The inset diagrams show the qualitative 
features of the eigenvalue spectrum in each region. The continuous spectrum at - D  is not 
drawn. 
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somewhat more complicated. As we shall see below in our analysis of the 
steady-state bifurcation, for 

( e + 2 D  "]~/-' 
( ~ + D ) \ 3 e + 4 D ]  <COo < (e+ D) (91) 

the incoherent state is stable when K <  K,. and there is a subcritical steady- 
state bifurcation to a synchronized state at K =  K,.. There is no prior onset 
of synchronization in the peaks of the distribution. The further qualitative 
change in the stability properties of the incoherent state with increasing ~o o 
above (e + D) is to replace the steady-state bifurcation by a Hopf bifurca- 
tion which leads to time-dependent behavior (cf. Section 3.2) in the form of 
stable nonlinear "standing waves." These waves appear to be the type of 
state Kuramoto envisioned; they are discussed in greater detail below. 
It seems likely that these conclusions remain true in the limit D--* 0. 

3. C O D I M E N S l O N - O N E  B I F U R C A T I O N S  

For the nonlinear analysis to follow we require the Fourier expansion 
of .4~(r/). With 

e ~~ r l - i - ~  = ~ l~t_~(co)e '/~ (92) 
I : r  0,  1 

and 

,A'(q) in (13) becomes 

din' q(O', o9', t) g(o)')e -i~ 2n(g, ql ) (93) 

~U(q)= - nK {#o < g, rl-i > rl2 + e-i~ < g, ql > r/-2 

+ Z le i t~  (94) 
I/I > / 2  

3.1. S t e a d y - S t a t e  Bi furcat ion 

We consider a simple pure imaginary root A ~(Zo)= 0 so that ), = - i z  o 
is real. As a parameter such as K is varied, we assume that 2 crosses 
through 2 = 0  at K = K , .  From (46)-(48) there are two eigenfunctions ~u 
and ~:.~u=~u. with amplitudes (~,ct*) defined by ct(t)--(~',q). The 
distribution r/ decomposes into the critical linear modes P; .q= 
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~(t) ~v(0, co) + cc and the remaining degrees of freedom S(O, co) - )7 - P~.q. 
Thus we have 

r/(0, co, t )=  [~(t) ~(0, 69) + cc] + S(O, co, t) (95) 

where (~', S) = 0. In terms of the Fourier components of q and S, we have 

ql = ~b6c~ + ~*~O*61. _ l + $1 (96) 

Note that the normalization (25) requires 

S t=o=0  (97) 

By projecting with ~, the evolution equation (11) can be rewritten as 

~i = ~x + (~ ,  ./V'(q)) (98) 

OS 
0--7 = s + { ~U(r/) - [( {', JV(q)) 'F+ cc] } (99) 

Since (g,  q/) =c~6t.t +c~*6t._l + (g,  $/)  in (94), the Fourier decomposi- 
tion of these equations gives 

c~ = ,;,c~- rtK(~x* + <g, S_, >)<~, $2> (100) 

3S s  z ( ~ , S 2 ) ~ b )  
Ot [ 

+ 2e'~~ + (g,  S_,  )) $3(co)- (c~ + (g,  St))(c~$ + Sl)] 

+ ~ le'~ * + (g ,  S _ t  ) )  St+ ,(oo) - (c~ + (g ,  St ) )  St_ t(~o)] + cc 1 
/ t>3 J 

(I01) 

3.1.1. Dynamics on the Center  Mani fo ld .  Equations (100}- 
(101) are obviously coupled, but on the center manifold the "transverse" 
degrees of freedom S depend on time through the critical amplitudes; this 
may be expressed in terms of a function H(O, 09, ct, ct*): 

S(O, o9, t)=H(O, co, c~(t),ct(t)*)= ~ Ht(O,~(t),~(t)*)e u~ (102) 
I ~  - - o c  

In geometric terms, H describes the graph of the center manifold near the 
incoherent state. (2~ Thus solutions on the center manifold satisfy 
(100)-(101) with S replaced by H, 

822/74/5*6-8 
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o~ = 2cz- rcK(ct* + (g,  H_ ,  ))(t~, H2) (103) 

{ Ot=.WH-TzK e'~ + <g, H _ t > ) ( H z -  <~, H2>O) 

+ 2e'2~ * + ( g, H_ 1 > ) H3(09) - (ct + ( g, Hi > )(cqO + Ht )] 

le"~ * + <g, H_I >) Hi+ 1(09)- (a + <g, H 1 >) Hi_ t(09)] + cc 1 X + 
/~>3 ) 

(104) 

Equation (103) for the mode amplitude now decouples from S and defines 
an autonomous two-dimensional system. 

The center-manifold dynamics (103) and the graph function are both 
constrained by the 0(2) symmetry of the problem. The Fourier coefficients 
of H for 1> 0 must have the form 

HI(09 , cx, ~*) = cdht(09, tr) (105) 

where hA09, or) satisfies 

hi(--09, t r)*= ht(09, tr) (106) 

and a = let[ 2 denotes the basic 0(2) invariant. Similarly (103), the equation 
for ~, must have the general form 

~=  p(a)~ (107) 

where p(tr) is a real-valued function of a single variable. For small ct, the 
leading terms in (103) are therefore 

0~ = 0tip(0) + po(O)l~l 2 + . . . ]  (108) 

and comparison to (103) shows p (0 )=2 ,  and p,,(0) remains to be 
calculated. 

We briefly summarize the derivation of (105)-(107). The form of H is 
constrained by the fact that the center manifold is mapped to itself by 0(2)  
transformations, t23~ More precisely, if q(0, 09) corresponds to a point on the 
center manifold and ~, e O(2), then the transformed function ~,.q will also 
lie on the center manifold. When we represent elements of the center 
manifold using (102), 

q(O, 09)= ~x~u(O, 09)+ or* ~*(0, 09)+ H(O, 09, ct, ct*) (109) 

then ~.~/ must also be of this form 

(),.q)(O, 09)=ct'~(O, 09)+ot'*W*(O, 09)+ H(O, 09, od, ot'*) (110) 
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for some transformed amplitude ct'. The constraints on H implied by this 
requirement follow from considering the generators of 0(2) in (15)-(16). 
In conjunction with (17) we find for rotations 

[ ~ ( 0  - r co) + cc] + H ( O  - ~, to, ~, o~*) 

= [ c t e - i ~ ( O ,  t o ) + c c ] + H ( O ,  to, e-i4'ot, ei~ct *) (111) 

and 

[c t~( -0 ,  - t o ) + c c ]  + H ( - O ,  - t o ,  or. or*) 

= [a*~(0, to) + cc] + H(O, to, ct*, ~) (112) 

for reflection. Since 7 ' (0 -  ~b, to )=e  ~r to) and ~u(-0, - t o ) =  ~(0, to)*, 
the amplitude ~ transforms under 0(2) by 

q~ . o t  = e - ir oc 

and H must satisfy 

H(O -- (b, to, ct, o(*) = H(O, to, e-iC'ot, ei%t * ) 

H( - 0 ,  - t o ,  or, or*) = H(O, to, or*, or) 

(113) 

(114) 

(115) 

(116) 

Restated ~ r  the Fourier coefficients Ht, these relations require 

e -~Hl( to ,~ ,~*)  = HI(O, to, e - i ~ a , e ~  *) 

and 

(117) 

Ht ( - to ,  ~, ~*)* = Hi(to, ~*, 0t) (118) 

respectively. The rotational constraint (!17) states that the function (~*)~Ht 
is invariant under rotations, hence it depends on the mode amplitudes 
(~, ~t*) only through the basic invariant (ref. 17, Chapter XII, w a =  I~12 
and must contain an overall factor of (ct*)~: 

( ~ * ) ' H / ( t o , ~ , ~ * )  = a%,(to, a) (119) 

where h~(to, a) is an arbitrary function of to and a. Dividing by (ct*) / gives 
the form of Ht in (105); the reflection symmetry (118) then further requires 
that h~(to, a) satisfy (106). 

The 0(2) invariance of the center manifold also implies that the vector 
field in (103) must commute with the representation of 0(2) given in 
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(113)-(114). This can be explicitly verified using the properties of H/ in 
(117)-(118). Any smooth two-dimensional vector field that commutes with 
this representation must have the form (107); see, for example, Golubitsky 
et al., (17) Chapter XII, w 

3.1.2. Eva lua t ion  of  P o ( 0 ) .  From (105), HI and H2 have the 
form 

HI = c~hl(co, a) = o~[h(l~ + (.f(a)] (120) 

H2 = 0r 0") = 0(2[-h~2)(02) + (9(0")] (121) 

However, the geometry of the center manifold requires that the lowest 
order terms be quadratic in (a, a*), so h(~~ hence the center-manifold 
vector field (103) becomes 

0~= 2 ~ -  ~K~ la12(1 + (g,  h * ) ) ( ~ ,  112) (122) 

= c([2 - rrK(~, h~ )) I~12 + ...-I (123) 

Comparing (108) and (123), we obtain p~(0), 

p,(0) = - r rK(~ ,  h i '  ) (124) 

in terms of the center-manifold coefficient h~ ). 
When S is given by (102) we have 

OS OH OH 
- 7 =  ~ a + o-g-; a* (125) 

for solutions on the center manifold, and consistency with (101) requires 

O H  OH . 

=.LPH-TtK {ei~ * + ( g , H  , ) ) ( H  2 - ( ~ , H 2 ) ~ b )  

+ 2ei2~162 * + (g,  n ,  ))  n3(co ) - -  (0r + (g,  n I ))(0@ + Hi )] 

+ y. le"~ * + (g,  H i ) )  HI+ i(co) -- (or + (g ,  H, ) Ht_ l(co)] + cc t 
/~>3 ) 

(126) 

where 0t is given by (103). This provides the equation needed to determine 
the expansion coefficients of H; for small I~1, we can solve (126) using 
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a power series expansion in (ot, ot*). Separating the different Fourier 
components of (126) f o r / =  1, /=2 ,  and l/>3, we find 

dill 8Hj , 
~ + ~ ,  ~ = L , H ~ - r t K ( o t * + ( g , H  ) ) ( H 2 - ( ~ , H , ) ~ )  (127) 

d O ~  - I _ 

dH2 dH~ ~t* = 

dot Jt+-----:'dot, L'H'-2rrK[(ot*+(g'H-I))H3(w)" - 

- ( o t +  (g,  Ht))(~ff + H,) ]  (128) 

dHi dill . ,  
dot ~ + dot --gc~ = LtHl-lr~K[(ot* + (g'  H_z ) ) ) Hl+,(o9) 

- -0z+ (g,  H~)) H,_,(co)] (129) 

respectively, and inspecting these equations shows that the inhomogeneous 
term ot2~b in (128) forces a nonzero term 12~ h z (o9) at the lowest order term 
in H2. Since h]~ the balance at second order in (128) is 
22h~ 21 = L2h~ zl + 2nK~b, which gives 

h%~'(~o)- - i n K ~ ( c o )  
o o - z o - i 2 D  (130) 

Thus the cubic coefficient in the center-manifold dynamics (124) is 
given by 

-rc2K3 f~- do9 g(o9) (131) 
P"(O)--2A'l(Zo-~ ) _~. (cO-zo-- iD)2(oJ-zo-- i2D) 

Note that p,,(0) is real, as expected from 0(2) symmetry. 

3.1 .3 .  E x a m p l e  o f  a B i m o d a l  P o p u l a t i o n .  For the population 
in (84) the first steady-state bifurcation occurs when the eigenvalue 2+ 
crosses zero; this occurs along K = K ,  (Fig. 1). Along this steady-state 
locus, the coefficient (131) can be easily evaluated by closing the contour 
in the lower half-plane: 

rcZK,2(3~ + 4D)(o9 o - co~) 
p,,(0) = 2E(e + D)  2 - cog] [(e + 2D) z + coo] (132) 

where 

[ ~,+ 2D ~12 
co,,_-- (e+ D) \~. ~-~-~1 (133) 
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Since o9o < (e + D) when this bifurcation occurs, the overall sign of po(0) 
determined by ogoZ _ o9a.2 For o9o < oga, the bifurcation is supercritical to a 
stable synchronized state: for o9o > oga, we have po(0)>  0 and the bifurca- 
tion is subcritical. Note that p ,(0)  is finite in the limit D--* 0 as long as 
E > 0; this feature is examined in greater generality below. 

For e > 0  and D =  0, the transition from supercritical to subcritical 
bifurcation was noted by Kuramoto,  (-~ and at e = 0 and D > 0 it was found 
by Bonilla et al. (j~) and Okuda and KuramotoJ  9) The former group also 
calculated the fifth-order term necessary to determine that the subcritical 
branch turns around at a saddle node bifurcation and becomes stable at 
finite amplitude. 

3.1.4. T h e  D--* 0 Limit .  If  D = 0 ,  then the critical eigenvalues 
emerge from the continuous spectrum simultaneously with the onset of the 
linear instability, and it is of interest to examine the behavior of the 
amplitude equation in this regime. At criticality for either steady-state or 
Hopf bifurcation Re 2 = 0, so Im z0 = 0; thus we consider the behavior of 
p~(0) when D---, 0 with zo=0.  The integrand in (131) has poles at co = iD 
and og=i2D that approach the contour of integration as D--*0. We 
assume g(og) is analytic at o9=0, so that the contour can be deformed 
slightly below the axis and the limits evaluated using the Plemej formulas. 

It is convenient to first consider the limiting behavior of A~. From (37) 
we reexpress the derivatives of At(z) by integrating by parts, 

O" ilK r ~ O"g(og)/Oog" 
At(z) = 3,,.o + - ~  J_ ~ do9 (co _ z - iID) (134) 

Thus, when z = r is real-valued, then as D--* 0, 

0" i K [  ~ dogO"g(og)/Oog"+i~zO"g(r)] (135) 
o l imo~z"A ' ( r )=6"~  - ~ f _ ~  og--r  ~ J  

where ~ denotes a principal value integral. For steady-state bifurcation, 
when g(og) is even in o9 and r = 0 at K =  K,., these limits simplify: 

n ,f0~c~ l im ~ ~ A, (0) = iK,. do90"g(o9og)/Oog" n odd (136) 

0" rtKc O"g(O ) 
olimo Oz" A l(O)= 6,,.o 2 009" n even (137) 

Note that for n = 0 ,  setting A j ( 0 ) = 0  in (137) recovers the previous result 
(3) for K,.= 2/rig(0). 
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For small D the behavior of p,~(0) is extracted in the same way; setting 
Zo = 0, we find 

I ~ I K ~  3 r g(09) 
lim J &o p~(O)= 2.4,1(0) o~o _~. (og--iD)2(tn--i2D) 

A','(0) 
= i(xK,.) 2 2~1(0)+ ~9(D) 

_ - - x  OZg(O)[;:dcoOg(~)m/&o]-' 
g(O)Z 0092 + (9(D) (138) 

Once differences in notation are taken into account, this result agrees with 
the coefficient obtained by Kuramoto by the "self-consistent" methodJ 2~ 
Notably absent is the kind of singular behavior found in the Vlasov 
amplitude equations in the corresponding limit. "6} For a monotonic reflec- 
tion-symmetric profile this gives p , , (0)<0 in the limit of weak diffusion. 
Thus at the level of the amplitude equation, we expect supercritical bifurca- 
tion to a stable synchronized state in this regime. However, when D = 0 
center-manifold theory no longer justifies our reduction to two dimensions; 
the qualitative agreement at D = 0  between numerical simulations c4} and 
our amplitude equation may be fortuitous. 

3.1.5. Perturbing O(2) ~ SO(2). If the distribution g(to) is per- 
turbed so that the reflection symmetry (18) is broken, then the bifurcation 
problem [in the rotating frame (19)] has only the rotational symmetry 
SO(2). In this case one expects the real eigenvalue of multiplicity two to 
split a nondegenerate complex-conjugate pair and the steady-state bifurca- 
tion considered here to be perturbed to a Hopf bifurcation. The resulting 
Hopf bifurcation leads to time-periodic states in the form of rotating or 
traveling waves; Knobloch discusses such perturbed bifurcations in more 
detail.l~4) 

3.2. Hopf Bifurcation 

We next consider a simple complex root A l(Zo)= 0 so that Zo :/: - z *  
and 2 = -izo is complex. As K is varied through Kh, we assume that Re 2 
crosses through Re 2 = 0 at K =  K;,. From (57) there are two eigenfunctions 

and x - U =  ~*, with amplitudes (ct, fl) defined by ot(t)~(~,q) and 
p(t)=-(x.~,q). With the projections (60)-(61), the distribution 
decomposes as before, 

q(O, 09, t ) =  [ct(t) ~(0, og)+fl(t)tr 7t(O, o9) + c c ]  +S(O, tn, t) (139) 

where (~, S ) =  (x.  ~, S ) = 0 .  
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Projecting (11) with ~' and x. ~ yields 

= 2~ + (~ ,  J : ( r / ) )  (140) 

/~ = 2fl + (x .  ~,  ./V(q)) (141) 

a-=-~S = .L#S + {,/V'(q)- [ ~(~', ,/V'(r/))+ x. ~(~c. ~', JV(q)) + cc] } (142) 
Ot 

In terms of the Fourier components of r/;, 

th=(~r162 (143) 

(g,  r/;) = (c< + fl*)6;. I + (~* + fl)6;. - i  + (g, St) (144) 

and the expansion of ~/'(r/) in (95), (140)-(142) can be rewritten as 

~ = 2c<--nK(cx* +fl+ (g, S_,))(~J, $2) (145) 

fl= 2 f l -  nK(ct + fl* + (g, SL) ) ( x .~ ,  S_2) (146) 

{ ~ 7 = . ~ S - n K  e ; ~  

- <x.~*, $2>x.$*] +2ei2~ * +/3+ <g, S_l>) $3(o9) 

- (ct +/3* + (g ,  S, ))(~tr + /3*x .  ~b* + S, )] 

+ ~ /ei;~ * + f l +  (g,  S _ l ) )  S;+ ,(o9) 
/ > / 3  

- (ct +/3* + (g,  S, ))  S;_ i(og)] + co} (147) 

3.2.1. Dynamics  on the  Center  M a n i f o l d .  For a solution on 
the center manifold near the incoherent state, we can express the time 
dependence of S(O, o9, t) as 

S(O, 02, t)= H(O, o9, or(t), ct(t)*, fl(t), /3(0*) 

= ~. H;(og, c<(t), ~(t)*, fl(t),/3(t)*)e u~ (148) 
/ =  --,zr 

and restrict (145)-(147) to these solutions by substituting S=H.  This 
determines the autonomous four-dimensional system: 

& = 2 ~ -  nK(c<* + fl + (g,  H_~))( t~,  H2) (149) 

/~ = 2/3 -- nK(~ +/3* + (g ,  H, ) ) ( x .  t~, H_2) (150) 
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For this bifurcation the mode amplitudes transform according to 

~ . (~, /3) = (e-i~ot, ei<'fl) (151) 

x . (~ , /3)= (/3, ~) (152) 

and the 0(2) invariance of the center manifold implies that the Fourier 
coefficients of H have the form 

/ 

Ht = ~ ~j(fl .)t-j  H~j~(co, icx[2, Jill-', ~/3, ~*/3") (153) 
j = O  

for l>0 .  Here HI -/~ are functions of I~12, 1/312, ~/3, ~*/3", and co that satisfy 

H~J~(-co, I~l 2, 1/312, aM, ~*/3")* = n~-Y~(co, 1/312, I~12, c~/3, ~*/3") (154) 

for j = l , 2  ..... /. The analysis leading to (153)-(154) is analogous to the 
argument given above for steady-state bifurcation: the invariance of the 
manifold requires the Fourier components of H to satisfy 

e-a~H~(co, oe, o~*,fl,/3*)=H~(O, co, e-i~oqeiC'ot*,e~/3, e-i~'fl *) (155) 

and 

Hl(-co,  0~, ~*,/3,/3*) = Hi(co,/3,/3", ~, ~*) (156) 

The constraint (156) implies that the function (~*)tH~ is invariant under 
rotations, hence it can only depend on the mode amplitudes through the 
basic rotation invariants I~12, 1/312, ~/~, and ~*/3" and must contain an 
overall factor of (~*)( By combining I~12 and c(*/3", there are 1+ 1 distinct 
ways to generate this factor, so (c~*) t HI takes the form 

t 

(~*) tn /=  ~ 1~12J (~*//*)~-J a~Y~(co, I~l z, 1/312, ~/3, ~*/3 *) (157) 
j = O  

where the functions H~ jl are arbitrary functions of [~[z [/3[2, ~/3, ~,/3,, 
and co. Thus Ht has the asserted form (153); the condition imposed by 
reflection invariance (156) implies (154). 

For l=  I and /=2 ,  the components needed in (149) and (150), we 
have 

Hj = ceHll I(co, I~1 "2 I/~12, 0r e*/3*)+ fl*Hl~ I~12, 1/312, ~/~, ~*/3") (158) 

n2  = ~2H2(Z)(W, I~12, 1/312, c(/3, ~*]3")+ ~]3"H2(' I(co, 10~12, 1/3[ 2, ~]3, c(*]3") 

+ (/3.)2 n~o~(co, i~12 11312, aft, ~*/~*) (159) 
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Since the center-manifold geometry requires that the Taylor expansion of 
H begins at second order, the leading-order terms in these components are 

H, = ~(3) (160) 

H2=a2h~2'(co)+a/3*h~"(co)+(/3*)Zh~~ (161) 

The third-order terms will not be required to determine the cubic terms in 
the amplitude equations. Note that the general relation (154) implies 

h~_2'( -co)*  = h~~ (162) 

h i ' l ( - -w)* = h~"(co) (163) 

The four-dimensional vector field (149)-(150) commutes with the 0(2)  
symmetry (151)-(152) on the center manifold; in addition, this system can 
be further simplified by making a nonlinear change of variables (ct,/3) ---, 
(~',/3') to put (149)-(150) in Poincar6-Birkhoff normal form. 117'181 This 
change of variables introduces an additional S ~ symmetry defined by 
(~,/3) ~ eiZ(cq/3); this is the "phase shift symmetry" that characterizes the 
Hopf normal form even in bifurcations without symmetry. I-'~ Thus 
the normal form for (150) will have 0(2)  x S j symmetry and must be of the 
general form I ~7. ~s~ 

, =[p(u,A)+iq(u,A)] fl, +[r(u,A)+is(u,A)]6 _fl, (164) 

where f = I/3'12- I~'l 2 and p, q, ,', and s are real-valued functions of the two 
basic invariants u = Is'l-'+ 13'12 and A = 3"-. A final reduction to two dimen- 
sions is accomplished by introducing amplitudes and phases ct '= x~ e i~' and 
fl'=x,_e i~2 into (164) and noting that the two-dimensional amplitude 
equations 

:?, = [ p + 6 r ] x ,  (165) 

.;q = [p-6r]x2  (166) 

are decoupled from the phase evolution 6"~ =q+6s and 4z =q-6s .  This 
decoupling is a consequence of the phase shift symmetry. Upon expanding 
(165) and (166), we obtain the leading-order behavior 

d', = {p(0) + [p,,(O)-r(O)]x~+ [p,,(O)+r(O)]x~+ ...}x, (167) 

Yc2= {p(0)+  [p,(O)+r(O)]x~+ [p,,(O)--r(O)]xg+ -- '}x2 (168) 
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where p(0) denotes the function p(u,  J )  evaluated at the origin. From the 
linear terms in (150) we find p ( 0 ) =  Re 2, and the third-order coefficients 
p,,(O) and r(0) are evaluated in the following section. 

Assuming the nondegeneracy condition, r ( 0 ) p ( 0 ) [ p u ( 0 ) - r ( 0 ) ]  :/:0, 
then the amplitude equations (167)-(168) may be truncated at third 
order. 1~7~ In addition to the incoherent state (x, ,  x2)=  (0, 0), setting 
.~ t=:~2=0 yields two other types of solutions, summarized in Table I. 
There are traveling wave (TW) solutions (XTw,0) and (0, Xvw) with 
R e 2 +  [ p , ( 0 ) - - r ( 0 ) ] X T w = 0  and standing wave solutions (SW) 
(Xsw, Xsw) with Re 2 + 2pu(0)X~w = 0. 

In the rotating frame, both TW solutions have the same frequency 
09Tw = q + X ~ w S ,  but the two states propagate oppositely in phase; the 
(Xzw, 0) state corresponds to a density depending on (0 + 09vwt) and the 
(0, Xrw) state evolves according to (0--09Twt). Note that q and s are 
evaluated on the TW solution, and therefore near the bifurcation COzw is 
fixed by the eigenvalue (91) at criticality ( K =  K~,): 

OJTW" = q(0) + higher-order terms in X§ 

[09o -- {/r + 0 )  2 ] 1/2 (169) 

In the lab frame (20), the frequencies of these two states are split into 
a3 - coTW and & + COTW, respectively. 

The SW frequency is COsw = q, where q is evaluated on the SW solu- 
tion; near criticality CO~w is also given by (169). The physical appearance 
of the SW can be described from its form near onset, 

Psw(0, 09, t ) =  1--+ K x s w  Im r cx~ e i(O+to'~wr) 
2n L 09 + 09"sw - iD 

flo e -- i(O ,o~SW t) 1 
09 - eO~w + iD J 

+ higher-order terms in Xsw (170) 

Table I. Branching Equations and Eigenvalues for Nondegenerate 
Hopf Bifurcation" 

Solution type (x~, x,) Branching equation Eigenvalues 

Traveling wave (TW) 
(Xvw, 0) and [0, X-rw) 

Standing wave (SW) 
(Xsw, Xsw) 

Re A + (p,,-- r)XTw =O 

Re ), + 2p,,Xsw = 0 

2(p,,-r)x~w, 
Re A + (p,, + r)XTw 

4puX~w, --4rX~w 

"The coefficients p,, and r are evaluated at (x~, x2) = (0, 0). 
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where % and flo are initial phases. There are two coun te rp ropaga t ing  syn- 
chronized clumps conta ining osci l lators with native frequencies near  - co~  w 
and +CO,w, respectively. Thus the popu la t ion  exhibits two s imul taneous  
macroscopic  oscillations. In the lab frame these macroscopic  osci l lators 
appear  as a slow osci l la tor  at frequency 0 3 -  Ogsw and a fast osci l la tor  at 
03 + Ogsw. 

The direct ion of bifurcat ion for these waves is determined by 
[ p . ( 0 ) - r ( 0 ) ]  and p,,(0). Their  l inear stabili t ies are easily calculated:  the 
T W  eigenvalues are 2[p.(O)-r(O)]x~w and Re,~+[p.(O)+r(O)]XTw; 
the SW eigenvalues are 4p.(O)xsw and - 4 r ( 0 ) X s w .  Depending  on the 
signs and relative magni tudes  of p . (0 )  and r(0), there are six possible bifur- 
cat ions as shown in Fig. 2. F o r  the b imodal  popula t ion  (84) we shall see 
that  [ p . ( 0 ) - r ( 0 ) ]  and p . (0 )  are negative, while r(0) is positive. Thus the 
SW are supercri t ical  and stable and the T W  are supercri t ical  and unstable.  

SW 

.§ 

~ - S W  

SW T W., ,-~, 

/ :'- "z2-L= 

SW ~.  TW 
"- " - ~ / / - "  / P U  = '~  

§ 
S W  ~ \ \  § ~. .~  

SW-.< 
TW ~.-.-~ ~\ 

. §  

P~ 

Fig. 2. Bifurcation diagrams for Hopf bifurcation with 0(2) symmetry. The stability and 
direction of bifurcation for the traveling waves (TW) and standing waves (SW) are deter- 
mined by the two cubic coefficients r(0) and p.,(0). The incoherent state is the horizontal 
branch and the two TW solutions are drawn as a single branch. Stable solutions are solid 
branches and unctable solutions are dashed. The signs of the real parts of the eigenvalues are 
indicated; see Table I for the TW and SW eigenvalues. 
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3.2.2 .  E v a l u a t i o n  o f  Pu a n d  r. From (161) for H2, 

(~,H2)=ot2(~,h~2))+cxfl*(~,h(2")+(fl*)2(~,h~})+~(3) (171) 

+ f l 2 ( x - ~ ,  h(z ~  ) + 0.9(3) (172) 

which determines the nonlinear terms in (149)-(150) through third order: 

( u[(~,h~ '>]ul2+(~,h~')t~[2] 
w --~ w -  ~'~,~ <~ ~. ,,~o,. >,~,~ + .  ~; ~,,,. >,~. ~j 

- ~K \f l ,  [(r (K "~, h g " )  + ,x*/~(,r �9 ~, hi' )" )3)  

{ fl[~176 
-nK\c t [ (~ , )2 (x .~ ,h~2 )  )+fl2(K.~(h~))])+dJ(4) (173) 

Only the first set of nonlinear terms in (74) have the phase shift 
symmetry and are retained in the normal form: 

( )  ( )  , - , 2 ,  ~+ a' ~' ( �9 [<r )1~'1 <~,h~">l/~'l 2] "~+(0(5) 
fl, =2 fl, -nK~,fl,[ (x.~,h~O,.)lfl,12 + (r.~k,h~,).)lu,]2], } 

(174) 

The remaining cubic terms and all fourth-order terms in (173) are removed 
by the normal form change of variables (ct, fl) ~ (u', fl'). From (162) and 
(163) the coefficients in (174) are related: (~k,h(2Z')=(x.~,h~ ~ and 
(~,  hi t ' )  = ( x .  ~, h(z ~)" ), so that the result in (174) can be rewritten in the 
standard form (164). Noting that 1~'12= (u-6) /2  and I/r12= (u+6)/2, we 
find that (175) becomes 

fl, = 2 -  ((~,h~.2')+(~,h~"))u+O(4) fl, 

By comparing (164) and (175), we can identify the cubic coefficients p, 
and r: 

nK ~ 
p,,(0) = - -~- Re(~k, [h~') + h~ 21] ) (176) 

nK - 11) (2) 
r(0)= - - -~-Re(~ ,  [h  2 - h  2 ] )  (177) 

in terms of the center-manifold coefficients h(, -') and h~ j). 
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For this bifurcation the equation for H, (126), becomes 

~  I { L~s -/~+cc = ~ H - n K  eiO(cx*+fl+ <g, H >)[n~ 

- <r H2>r <K.~*, H2>x.~b*] 

+ 2en~ * + fl + <g, H_ t >) H3(o9) 

-- (c~+fl* + <g, Hl>) (a~b+f l*~: .~k*+Hi )  ] 

+ ~ leU~ <g, H _ , > )  Ht+t(og) 
/>~3 

-- (ct + fl* + < g, H~ > ) H;_ ,(o9)] + cc t (178) 

and the functions ht22~, h~ '~, and h~ ~ may be determined from (178). By 
inspection of the l =  2 component we note that the inhomogeneous terms 
2nKen~ +/~*x.~,*) in (178) generate the leading terms ht2 il in 
H2; since H/(og)~ (.o(3) for l # 2 ,  applying (161) to the l =  2 component of 
(178) and equating terms of the same order, we obtain 

22h~2) = L2ht22~ + 2nK ~ (179) 

(2 + 2*)h~t~ = L2h~2'}+ 2nK (~b + x.  ~b*) (180) 

22"h~ ~ L2h~  } + 2 n K K . r  (181) 

with solutions 

h~2,(o9)_ - i n K r  
o9 - z o -- i2D 

h~' I(o9) = - inK[qJ(og) + x.  ~k(og)* ] 
co - i Im Zo - i2D 

- i n k  ~'. ~(~o)* 

o9 + z~ -- i2D 

These results satisfy the relations (162)-(163). 
From (176)-(177) these results determine the 

explicitly, 

_ n Z K  2 
p,(O) = 

2 

_ n2K 2 
r(0) 

2 

(182) 

(183) 

(184) 

Im do9 ~(o9)* 
_~. L ( o 9 - i l m z o - i 2 D )  + (o9- z ~ -  i2D)]  

(185) 

- -  Im doJ ~(oJ)* 
.... L(o9- i lm Z o -  i2D (o9 - z--~-- i2D)I  

(186) 

cubic coefficients 
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Provided Im Zo > - D ,  any singularities in the lower half-plane are due to 
g(o9). Hence by inspection we can see that at criticality for the bifurcation 
(Im Zo =0),  the limit D---, 0 is finite for both p,(0) and r(0). By contrast, 
the corresponding limit for the Vlasov equation involves pinching 
singularities that produce a singular D -3 behavior, t'6~ Here the well- 
behaved limit at D = 0  suggests that the oscillations produced by the 
bifurcation will grow like [K-K,.I  m even in the absence of noise. 

3.2.3. Example of a Bimodal Population. We illustrate these 
results for the bimodal population described in (84); for 4090> K the 
eigenvalues (2,2*) are given by 2 = - i z o = ( K - K h ) / 4 + i s  , where 
/2 - [o9o 2 - (K/4) 2] J/2 and Kh = 4(e + D). If K increases above Kh, there 
is a Hopf bifurcation. The coefficients p,,(0) and r(0) can be evaluated 
analytically at the bifurcation K =  Kj,; by closing the integration contours 
in the lower half-plane and using 0 2 = COo 2 - (e + D) 2, one obtains 

iK  h o9~ + [(2 -- i(~ + D ) ]  z 
A](z~ 2 /Wo 2 [ 1 2 _ i ( ~ + 0 ) ] 2 } ,  (187) 

Re< ~, h~'J> = 16nK, ,D(e + 0 ) "-02o9 4 
Io9 o + i(e + 2D)I 2 Io�g- [12 + i(e + D)]"I'- (188) 

4rtK,,g2z(e + 2D) o9o[4o9o + (~ + 2D) 2 - (e + 0 )  z ] 
Re(~ '  h~Z') = Io9~+ [12 -  i(e + 0)]2121o9o z -  [ D - i ( e + 2 0 ) ] ' - I  2 (189) 

The direction of bifurcation and stability of the traveling waves and 
standing waves are controlled by p,,(0), r(0) and p , , (0) - r (0) .  Since 
Re(~,  h~ 1'> and Re(~,  h~ 21 > are clearly positive, one can see by inspection 
that both p,(0) and p,,(O) - r(O) are negative, and the SW and TW solutions 
are always supercritical. The bifurcation produces stable TW solutions if 
r(0) < 0 and stable SW if r (0 )>  0; see Fig. 2. Subtracting Re(~,  h~ I > from 
Re(~,  h~ 1~> gives 

"~ 2 "~ 4 8~-Kh s + D) 2 P(~, D, o9o 2) 
r(0) = io94 _ [s + i(e + 0)]412 Io9o 2 - [(2 - i(e + 2 0 ) ]  212 Io9o + i(e + 20)1 z 

where 

(190) 

P(e, D, o9~) = 4(~ + 2D)o9g + (e + 2D)(4~ 2 + 14~D + 11D2)o9o 

+ D(e + D)(3~ + 3D)(~ z + 5eD + 5D) ( 191 ) 

Thus for this bimodai population r(0) is always positive and the 
bifurcation always leads to stable standing waves. 
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Fig. 3. Compar i son  of the s tanding  wave frequency oJ,~ w and cor~ak for the b imodal  distr ibu- 
tion at  cri t icali ty K = Kh for the Hopf  bifurcation a long  the line 1 + D/e < coo/e < co. Also 
shown is the ratio of o9 o to w~ak ; the curves are drawn for Die = 1. 

In light of Kuramoto's earlier discussion of the partially synchronized 
bimodal population (cf. the remarks in Section 2,3), it is interesting to 
compare the frequencies C%eak in (85) and CO~w in (169) for the SW near 
onset in the relevant frequency range (1 + D/e)< Ogo/e < oo. From (85) and 
(169) we find 

C%w = (COo/e) 2 - (1 + D/e) 2 
xo%~ak/ {(2~o/e) -  [1 + (tOo/e)2]1/2 } [1 + (COo/e)2] l/~ (192) 

As the peaks move far apart (COo/e--* oo), this ratio approaches unity and 
the oscillators in the peaks are indeed the oscillators that synchronize. 
However, as ~Oo/e approaches (1 +D/e),  the oscillators comprising the 
standing wave synchronize at frequencies that are substantially shifted 
away from the peaks of the native distribution toward the interior of the 
distribution; this is illustrated in Fig. 3. 

3.2.4. Comparison to Bonilla, Neu, and  Spigler. Bonilla et 

al. calculated the amplitude equation for a Hopf bifurcation from the 
incoherent state, but they neglected to include the second eigenvector x- ~F 
in (57) the is forced by 0(2) symmetry. In our notation this omission has 
the effect of setting the amplitude/~(t) of this mode to zero; if this is done, 
then the two-dimensional system for (x~, x2) in (167)-(168) is reduced to 6 

-'~t = {p(0)+ [ p u ( O ) - r ( O ) ] x ~ +  - . . } x  t (193) 

6 This corresponds to Eq. (3.18a) in Bonilla et aL with the identification KxJ2--* IA[. 
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Since p , , ( 0 ) - r ( 0 ) <  0 for the bimodal population, this equation predicts a 
single TW (x~, x2)=  (XTw, 0) which is supercritical and stable. The $W 
solutions (x~, x_,)=(Xsw, Xsw) and the second TW solution (x~, x_,)= 
(0, Xrw) are omitted; in addition, the actual instability of the TW is missed 
because the TW eigenvalue R e 2 +  [p,(0)+r(0)-]x-]- w corresponding to 
perturbations in the direction of the SW state is not included. 

3.2.5. Comparison to Okuda and Kuramoto. Okuda and 
Kuramoto (OK) consider two populations of oscillators ( i=  1, 2) with 
number densities ni(r t); in the absence of couplings each population has 
a definite native frequency: co t = 05 + Aco/2 and co2 = 05-  rico/2, respectively. 
The evolution of n~(r t) and nz(~b, t) is. described by 

&,,0__7. = On, ~__~ { I~" } -co,--~-~+ n,(r dr162162 

0 2 1 1  I 

+ D 8r 2- (194) 

----:-= --co, + de' fb' ) ' ' K'n n,(r t) s i n ( r  [K,n,(r t)+ ~(r t)] 
~?t . . . .  

02112 
+ D 0r T (195) 

The intrapopulation couplings are K; and K,_' and the coupling between the 
populations in K'. The incoherent state is an equilibrium described by 
n,(r = n2(r  l/2x, and the authors analyzed bifurcations from state. This 
model has 0(2) symmetry if 05 = 0 and KI = K_;. 

For the bimodal population (84) at e=0 ,  the Fokker-Pianck 
equation (4) reduces to the OK model but with the constraint of equal 
couplings K[ = K_; = K'. For the e = 0 distribution, 

g(co) = 1 [6(co + COo) + ~(co - COo)] (196) 

we define number densities by integrating over the frequency distribution of 
each subpopulation 

nl(O,t)= dcof(co-coo)p(O, co, t) (197) 
- v z  

n2(O, t )=  do) ~(co + coo) p(O, co, t) (198) 

822,'74J5-6-9 
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so that (4) becomes 

0n = 0n 1 
0--t -= --r -~  

02/'/1 
+ D  002 

+~0 {'7,(0, t) f~" 

On 2 On, O{ ~['~ 
ot - + ~ O o - ~ + - ~  n2(O, t) 

02n2 
+ D - -  002 

I l }  dO' sin(O-O') 2n~(O ', t)+-~nz(O, t) 

(199) 

K , K 0' dO' sin(O-O') I-~n2(O , t )+~n , (  , t ) ] }  

(200) 

Equations (194)--(195) have this form if we set Aco=2co o and 
K~ = K;_ = K'= K/2 and transform to the rotating frame 0 = ~b-o3t where 
the average frequency is zero. One of the cases considered by Okuda and 
Kuramoto is Kf = K_~ = 1 with K'  and LJo9 variable. Their results for the 
steady-state bifurcation and Hopf bifurcation are consistent with those of 
this paper. In particular, for the Hopf bifurcation they find that the SW 
solutions are expected to be stable. 

3.2.6. Perturbing 0 ( 2 ) ~  S0(2) .  If the distribution g(~o) is 
perturbed so that the reflection symmetry (18) is broken, then the complex 
eigenvalues of multiplicity two split into two nondegenerate complex 
conjugate pairs. The Hopf bifurcation considered here perturbs to two 
distinct Hopf bifurcations corresponding to the distinct pairs of eigen- 
values. The resulting Hopf bifurcations individually lead to time-periodic 
states in the form of rotating or traveling waves and the interaction 
between these waves yields modulated waves via secondary bifurca- 
tions. ~-'4-27~ The modulated waves are the perturbed form of the standing 
waves discussed above; Knobloch discusses such perturbed bifurcations in 
more detail. ~ ~41 

4. DISCUSSION 

The bifurcation analysis is summarized in Fig. 4, which shows the 
stable nonlinear states that arise from instabilities of the incoherent state. 
Our discussion does not treat the transition from the stable partially 
synchronized state to the stable waves; this transition is represented by a 
dashed boundary in Fig. 4. The interaction of the standing waves and the 
synchronized state can be studied by analyzing the codimension-two 
bifurcation defined by the merger of the Hopf and steady-state bifurcations. 
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(JJo 

E+D 

K=K h 

I ~ ~ S W ~  

I 
2((+0) 4((+D) 

Fig. 4. Nonlinear states for the bimodal distribution: the incoherent state (I), the partially 
synchronized state (PS), and the standing waves (SW). The solid lines are the stability boun- 
daries for steady-state biofurcation and Hopf bifurcation. The boundary between the standing 
waves and the partially synchronized state is shown schematically as a dashed line; the precise 
nature and location of this boundary have not been determined. 

This linear theory of the nonsemisimple real eigenvalue was developed in 
Section 2 of this paper and a normal form theory for the 0(2)  Takens-  
Bogdanov bifurcation has been given by Dangeimayr  and Knobloch. (-'81 
One complicating feature of the bimodal population is the subcriticality of 
the steady-state bifurcation at the codimension-two point; one would like 
to include the stable partially synchronized state at finite amplitude in the 
analysis. This could be done by generalizing the Dange lmayr -Knobloch  
theory to combine the nonlinear degeneracy of the steady-state bifurcation 
with the linear degeneracy. Formally this leads to a codimension-three 
bifurcation and would require a normal form of higher order; the analysis 
of Dangelmayr  and Knobloch truncates the normal form equations after 
cubic terms. 
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